Current Location >> Academic >> Publication >> Overview
Overview

We have totally published up to 240 SCI research papers up to now. These papers have been cited about 2475 times. The H-index is 26.

Representative papers

[1] Kong XD, Li L, Chen S, Yuan S, Zhou J*, Xu JH* (2014). Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 111 (44): 15717-15722.

http://www.pnas.org/content/111/44/15717

[2] Kong XD, Ma Q, Zhou JH*, Zeng BB*, Xu JH* (2014). A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-b-blocker precursors. Angew Chem Int Ed, 53: 6641 –6644.

http://onlinelibrary.wiley.com/doi/10.1002/anie.201402653/abstract

[3] Ni Y, Xu JH* (2012). Biocatalytic ketone reduction: A green and efficient access to enantiopure alcohols. Biotechnology Advances, 30(6): 1279-1288.

http://www.sciencedirect.com/science/article/pii/S0734975011001881

[4] Zheng GW, Xu JH* (2011). New opportunities for biocatalysis: Driving the synthesis of chiral chemicals. Current Opinion in Biotechnology, 22: 784–792.

http://www.sciencedirect.com/science/article/pii/S0958166911006306

[5] Ma BD, Kong XD, Yu HL*, Zhang ZJ, Dou S, Xu YP, Ni Y, Xu JH* (2014). Increased catalyst productivity in α-hydroxy acids resolution by esterase mutation and substrate modification.ACS Catalysis, 4: 1026-1031.

http://pubs.acs.org/doi/abs/10.1021/cs401183e

[6] Xu GC, Yu HL*, Zhang XY, Xu JH* (2012). Access to optically active aryl halohydrins using a substrate-tolerant carbonyl reductase discovered from Kluyveromyces thermotolera. ACS Catalysis 2: 2566−2571.

http://pubs.acs.org/doi/abs/10.1021/cs300430g

[7] Zhang YJ, Zhang WX, Zheng GW*, Xu JH* (2015). Identification of an ε-keto ester reductase for the efficient synthesis of an (R)-α-Lipoic acid precursor. Advanced Synthesis & Catalysis, 357: 1697-1702.

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201500001/abstract

[8] Li H, Luan ZJ, Zheng GW*, Xu JH* (2015). Efficient synthesis of chiral indolines using an imine reductase from Paenibacillus lactis. Advanced Synthesis & Catalysis, 357: 1692-1696.

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201500160/abstract

[9] Huang L, Ma HM, Yu HL*, Xu JH* (2014). Altering the substrate specificity of a reductase CgKR1 by protein engineering for bioreduction of aromatic a-ketoesters. Advanced Synthesis and Catalysis, 356: 1943–1948.

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201300775/abstract

[10] Ma HM, Yang LL, Ni Y, Zhang J, Li CX, Zheng GW, Yang HY*, Xu JH* (2012). Stereospecific reduction of methyl o-chlorobenzoylformate at 300 g/L without additional cofactor using a carbonyl reductase mined from Candida glabrata. Advanced Synthesis & Catalysis, 354, 1765-1772.

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201100366/abstract

[11] Zhao J, Chu YY, Li AT, Ju X, Pan J, Tang Y*, Xu JH* (2011). An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers. Advanced Synthesis and Catalysis, 353(9): 1510–1518.

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201100031/abstract

[12] Ni Y, Li CX*, Zhang J, Shen ND, Bornscheuer U, Xu JH* (2011). Efficient reduction of ethyl 2-oxo-4-phenylbutyrate at 620 g/L by a bacterial reductase with broad substrate spectrum. Advanced Synthesis and Catalysis, 353: 1213-1217.

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201100132/abstract

[13] Nguyen-Tran HH, Zheng GW*, Qian XH and Xu JH* (2014). Highly selective and controllable synthesis of arylhydroxylamines by the reduction of nitroarenes with an electron-withdrawing group using a new nitroreductase BaNTR1. Chemical Communications, 50: 2861-2864.

http://pubs.rsc.org/en/Content/ArticleLanding/2014/CC/c3cc48590k

[14] Luo XJ, Kong XD, Zhao J, Chen Q, Zhou JH*, Xu JH* (2014). Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Biotechnology and Bioengineering, 111(10): 1920-1930.

http://onlinelibrary.wiley.com/doi/10.1002/bit.25272/abstract

[15] Chen Q, Luan ZJ, Cheng X*, Xu JH* (2015). Molecular dynamics investigation of the substrate binding mechanism in caroxylesterase. Biochemistry, 54: 1841-1848.

http://pubs.acs.org/doi/abs/10.1021/bi5015612

[16] Zhang Y, Pan J, Luan ZJ, Xu GC*, Xu JH*, Park SH (2014). Promiscuous esterase activity of a novel bacterial chloroperoxidase for highly enantioselective synthesis of a chiral cilastatin precursor. Appl Environ Microbiol, 80(23): 7348-7355.

http://aem.asm.org/content/80/23/7348

[17] Zhang XY, Fan X, Qiu YJ, Li CY, Xing S, Zheng YT, Xu JH* (2014). A thermostable esterase newly identified from Sulfobacillus acidophilus: Properties and performance in phthalate esters degradation. Appl Environ Microbiol, 80(22), 6870-6878.

http://aem.asm.org/content/80/22/6870

[18] Zhang WX, Xu GC, Huang L, Pan J, Yu HL*, Xu JH* (2013). Highly efficient synthesis of (R)-3-quinuclidinol in a space-time yield of 916 g L-1 d-1 using a new bacterial reductase ArQR.  Organic Letters, 15(19): 4917-4919.

http://pubs.acs.org/doi/abs/10.1021/ol402269k

[19] Xu GC, Yu HL*, Zhang ZJ, Xu JH* (2013). Stereocomplementary bioreduction of β-ketonitrile without  ethylated  byproduct. Organic Letters, 15(21): 5408–5411.

http://pubs.acs.org/doi/abs/10.1021%2Fol402733y

[20] Ma BD, Yu HL*, Pan J, Liu JY, Ju X, Xu JH* (2013). A thermostable and organic-solvent tolerant esterase from Pseudomonas sp. ECU1011: Catalytic properties and performance in kinetic resolution of α-hydroxy acids. Bioresource Technology, 133: 354-360.

http://www.sciencedirect.com/science/article/pii/S0960852413001120

[21] Zou ZZ, Yu HL*, Li CX, Zhou XW, Hayashi C, Sun J, Liu BH, Imanaka T, Xu JH*. (2012). A new thermostable β-glucosidase mined from Dictyoglomus thermophilum: Properties and performance in octyl glucoside synthesis at high temperatures. Bioresource Technology, 118: 425-430.

http://www.sciencedirect.com/science/article/pii/S0960852412006451

[22] Wang LJ, Li CX*, Ni Y, Zhang J, Liu X, Xu JH* (2011). Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresource Technology, 102 (14): 7023-7028.

http://www.sciencedirect.com/science/article/pii/S0960852411005608

[23] Wang ZL, Xu JH, Feng H, Qi HS (2011). Fractal kinetic analysis of polymers/nonionic surfactants to eliminate lignin inhibition in enzymatic saccharification of cellulose. Bioresource Technology, 102(3): 2890-2896.

http://www.sciencedirect.com/science/article/pii/S0960852410017888

[24] Luan ZJ, Li FL, Dou S, Chen Q, Kong XD, Zhou JH, Yu HL*, Xu JH* (2015). Substrate channel evolution of esterase for the synthesis of cilastatin. Catal. Sci. Technol., 5: 2622-2629.

http://pubs.rsc.org/en/Content/ArticleLanding/2015/CY/C5CY00085H

[25] Huang L, Xu JH, Yu HL* (2015). Significantly improved thermostability of a reductase CgKR1 from Candida glabata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters. Journal of Biotechnology, 203: 54-61.

http://www.sciencedirect.com/science/article/pii/S0168165615001005


Copyright: 2015 Biocatalysis and Biotechnology Laboratory synthesis Address: Shanghai Mei Long Road 130, 18th Floor, East China University of experiment, 9th Floor, East Email: jianhexu @ ecust. edu.cn      
Phone: + 86-21-6425-0840 Technical Support: Information Technology Co., Ltd. Shanghai Yi Super