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Simultaneous saccharification and fermentation (SSF) is the most efficient operation in biorefining conversion,
but aerobic SSF under high solids loading significantly faces the serious oxygen transfer limitation. This study
took the first insight into an aerobic SSF by high oxygen demanding filamentous fungi in highly viscous lig-
nocellulose hydrolysate. The results show that oxygen requirement in the aerobic SSF by Aspergillus niger was
well satisfied for production of cellulosic citric acid. The record high citric acid titer of 136.3 g/L and the overall
conversion yield of 74.9% of cellulose were obtained by the aerobic SSF. The advantage of SSF to the separate

hydrolysis and fermentation (SHF) on citric acid fermentation was compared based on the rigorous Aspen Plus
modeling. The techno-economic analysis indicates that the minimum citric acid selling price (MCSP) of $0.603
per kilogram by SSF was highly competitive with the commercial citric acid from starch feedstock.

1. Introduction

Simultaneous saccharification and fermentation (SSF) is the most
efficient operation in lignocellulose biorefining processes for its high
cellulase utilization efficiency (Balat et al., 2008). When SSF is applied
to aerobic fermentations, the oxygen transfer rate from air phase to the
highly viscous hydrolysate phase is one of the rate limiting steps (Chen
et al., 2013; Freitas and Teixeira, 2001). The previous studies revealed
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that the oxygen transfer rate in the highly viscous hydrolysates sig-
nificantly decreased with the increasing solids loading but still met the
oxygen demand of Gluconobacter oxydans for gluconic acid generation
(Hou et al., 2017). For the high oxygen demanding filamentous fungi
such as Aspergillus niger, the limited oxygen transfer rate could lead to
the reduced product yield even the failure of fermentation conversion
in the highly viscous hydrolysates (Li et al., 2017).

Citric acid is an important organic acid product with million tons of
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annual production globally (Soccol et al., 2006). Lignocellulose biomass
has been an important feedstock option for citric acid production. Two
fermentation methods, the solid state fermentation and separate hy-
drolysis and fermentation (SHF), were conducted in the previous re-
ports (Hang and Woodams, 1998; Liu et al., 2014; 2015; Yang et al.,
2016). Solid state fermentation utilized the fermentable sugars in the
feedstocks but the obtained citric acid was low (34 g/L of citric acid
from pretreated sugarcane bagasse) (Khosravi-Darani and Zoghi, 2008).
In the SHF operation, a maximum citric acid titer of 100 g/L was ob-
tained from corn stover hydrolysate (Zhou et al., 2017). The major
disadvantage of SHF is the considerable sugar loss and high energy
consumption in the solid/liquid separation of the highly viscous hy-
drolysate slurry (Olofsson et al., 2008). SSF is well recognized for its
advantage on relieving product (glucose) inhibition on cellulase activity
(Jin et al., 2017; Kawaguchi et al., 2016; Ohgren et al., 2006). In cel-
lulosic ethanol fermentation, SSF achieved the record high ethanol titer
of 101.4 g/L (equivalent to 12.8%, v/v) from pretreated and detoxified
wheat straw at moderate cellulase usage (Liu et al., 2018).

This study took the first investigation on the feasibility of SSF on
cellulosic citric acid fermentation by Aspergillus niger under the high
corn stover feedstock loading. The impact of oxygen transfer on cell
growth and bioconversion of A. niger was evaluated. The techno-eco-
nomic analysis shows that the cellulosic citric acid by SSF is competitive
to the commercial citric acid from starch feedstocks.

2. Material and methods
2.1. Raw materials

Corn stover (CS) was harvested from Bayan Nur League, Inner
Mongolia Autonomous Region, China in fall 2015. After collection, the
materials were milled coarsely using a hammer crusher and screened
through a mesh with a circle diameter of 10 mm. The milled corn stover
with moisture content of 13% was washed to remove field dirt, stones
and metals, then air dried at room temperature followed by drying in an
oven at 105 °C until constant weight. The raw corn stover contained
35.4% of cellulose and 24.6% of hemicellulose measured according to
NREL protocols (Sluiter et al., 2008; 2012).

2.2. Enzyme and chemicals

Cellulase enzyme Cellic CTec 2.0 was purchased from Novozymes
(China), Beijing, China. The filter paper activity was determined as
203.2 FPU/mL according to the NREL protocol LAP-006 (Adney and
Baker, 1996), the cellobiase activity was 4900 CBU/mL according to
Ghose (1987), and the protein concentration was 87.3 mg total pro-
teins/mL cellulase solution according to Bradford (1976) using BSA as
protein standard.

Yeast extract was purchased from Angel Yeast, Yichang, Hubei,
China. Agar was purchased from Biosharp, Shanghai, China. All other
chemicals KH,PO4, NH4Cl, MgSO47H,0, ZnSO47H,0, CuSO,5H,0,
FeSO47H,0, MnCl,, NaOH, H»SO,4, Ca(OH), were purchased from the
local supplier Linfeng Chemical Reagents, Shanghai, China.

2.3. Strains and media

Aspergillus niger SIIM M288 was obtained from Shanghai Industrial
Institute of Microbiology (SIIM), Shanghai, China. The spore stocks
were maintained at —80 °C freezer in a synthetic medium containing
30% (v/v) glycerol solution.

Biodetoxification fungus Amorphotheca resinae ZN1 was isolated in
our previous works and stored in China General Microorganism
Collection Center (CGMCC), Beijing, China with the registration
number 7452 (Zhang et al., 2010b). A. resinae ZN1 was stored at 4 °C on
potato dextrose agar (PDA) slants.

The culture media used in this study included (1) PDA medium used
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for A. resinae ZN1 and A. niger SIIM M288 in petri dish with the com-
position of 200 g/L of potato juice, 20 g/L of glucose, 20 g/L of agar and
(2) a seed medium used for seed culture of A. niger SIIM M288 culture
with the composition of 70 g/L of glucose, 2.5 g/L of NH,4CI, 2.5 g/L of
KH,PO,, 0.25 g/L of MgS0,47H,0, 0.24 mg/L of CuSO45H,0, 1.1 mg/L
of ZnSO47H,0, 6.4 mg/L of FeSO,7H-0, and 3.6 mg/L of MnCl,.

2.4. Pretreatment and biodetoxification operations

Corn stover was dry sulfuric acid pretreated according to Zhang
etal. (2011) and He et al. (2014). Briefly, the dry corn stover and dilute
sulfuric acid solution (5%, w/w) were co-currently fed into a reactor
under mild agitation using a helical impeller at a solid/liquid ratio of
2:1 (w/w) and 175 °C for 5 min. After pretreatment, the pretreated corn
stover contained 37.6% of cellulose, 4.4% of hemicellulose, 2.2% of
glucose and 13.8% of xylose by weight percentage.

The pretreated corn stover was milled, neutralized using 20% (w/w)
of Ca(OH), to pH 5-6, then biodetoxified by A. resinae ZN1 according to
Zhang et al. (2010b) and He et al. (2016). The spores of A. resinae ZN1
were inoculated onto the pretreated corn stover and incubated for
4-7 days at 28 °C until most of inhibitors were degraded. After biode-
toxification, only acetic acid and minor furfural and HMF were de-
tected. The change in cellulose and hemicellulose was negligible, while
the dissolved sugars slightly decreased, in which glucose content re-
duced from 2.2% to 0.6%, and xylose reduced from 13.8% to 11.8%,
approximately 5.7% loss of the total sugars during biodetoxification.

2.5. Simultaneous saccharification and citric acid fermentation

A. niger SIIM M288 was activated by taking one vial of spore stock
onto a PDA agar slant and cultured at 28 °C for 72 h. The spores from
the PDA slant were washed by sterile water and cultured in the seed
medium at 28 °C for 36 h. Spores concentration in the seed medium
were counted on a haemocytometer and 2-3 X 10° spores per milliliter
were used for inoculation.

Simultaneous saccharification and fermentation (SSF) of the pre-
treated and detoxified corn stover feedstock was carried out in two 5L
bioreactors. The corn stover was fed into the first bioreactor equipped
with a helical impeller and pre-hydrolyzed at solids loading of 20-30%
with a cellulase dosage of 4 or 6 mg total protein per gram of dry solid
matter (DM) at 50 °C and pH 4.8 for 12-48 h (Zhang et al., 2010a). Then
the prehydrolysate slurry was transferred to the second bioreactor
equipped with two Rushton impellers for SSF at an aeration rate of
1vvm and 10% (v/v) inoculation of A. niger seed culture. The samples
were withdrawn at regular intervals, centrifuged at 11,167 X g for 5min
and the supernatant was analyzed for sugars and citric acid. The via-
bility of A. niger strain was measured by counting the colony forming
units (CFU) on the petri dish of the diluted fermenting slurry, in which
hypha formatted dispersive colony after 36 h culture (Javed et al.,
2010).

2.6. Citric acid yield calculation

The conversion yield of cellulose to citric acid is defined as the ratio
of citric acid formed to stoichiometric citric acid from cellulose in corn
stover feedstock:

Citric acid yield = [CA] X M x [Water]—[CA]y X My X [Water]y = Mgy,
M, x (1—[Water],) x [Cellulose] x 1.111 Mcy
X 100% (€]

where [CA] and [CA], are citric acid concentration at the end and the
starting of fermentation (g/L), M and M, are the total weight of fer-
mentation system at the end and starting point (g), [Water] and
[Water], are the water fraction content of fermentation system at the
end and starting point (g/g), [Cellulose] is the cellulose fraction of dry
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feedstock (g/g), 1.111 is the conversion factor for cellulose to equiva-
lent glucose, Mg,/Mca (0.9375) is the conversion factor of glucose to
citric acid on the basis of stoichiometric biochemistry (Zhou et al.,
2017).

2.7. Strain morphology

The fermentation slurry was diluted tenfold by deionized water and
then the diluted slurry was directly observed on a light microscope
(Olympus BX51, Tokyo, Japan) under 20 X magnification. A. niger was
distinguished from corn stover fibers based on morphological differ-
ence, in which the hyphae of A. niger presented as the curved fila-
mentous lines and compacted pellets, while corn stover particles were
rodlike fibers.

2.8. Particle size distribution

Particle size distribution in the fermentation slurry was measured on
Malvern Mastersizer 2000 particle size analyzer (Malvern Instruments,
Worcestershire, UK). The detection range was 0.02 pm-1000 pm.

2.9. Rheological property measurement

The rheology of fermentation slurry was measured by a rotational
viscometer (DV2T, spindle SC4-16, Brookfield, Middleboro, MA). The
apparent viscosity (;7,) was obtained at shear rate (y) range from 11.6 to
46.7 s~ ! at 25°C. The rheological property was fitted into power law
model 7, = K,-y"~!, where n was the dimensionless power-law index
(-), K, was the consistency coefficient (Pas™) (Hou et al., 2016). The
linearized power law model was shown in Eq. (2) and the K, and the n
values were calculated by measuring the intercept and the slop of Eq.
(2):

log,,n, = log,,Kp + (n—1)log,,y 2)

2.10. Assay of sugars, citric acid and inhibitors

Glucose, xylose, citric acid, acetic acid, furfural and HMF were
analyzed using HPLC (LC-20AD, refractive index detector RID-10A,
Shimadzu, Kyoto, Japan) with a Aminex HPX-87H column (Bio-Rad,
Hercules, CA, USA) at 65 °C using a mobile phase of 5mM H,SO, at a
rate of 0.6 mL/min.

2.11. Process model on Aspen Plus platform and economic analysis method

The process model was developed using Aspen Plus software
(AspenTech, Cambridge, MA) based on the cellulosic ethanol model by
NREL (Humbird et al., 2011). The major modifications included: (1)
pretreatment from conventional dilute acid pretreatment to dry acid
pretreatment (Zhang et al., 2011; He et al., 2014); (2) detoxification
from ammonia overliming into biodetoxification (He et al., 2016); (3)
saccharification and fermentation from SHF for ethanol production at
20% (w/w) solids loading into SHF or SSF for citric acid production at
25% (w/w) solids loading; and (4) product recovery from evaporation
for ethanol into heating (80 °C), solid/liquid separation, alkali neu-
tralization, acidolysis, decoloration and evaporative crystallization for
citric acid. The plant size was 37.5 metric tons processing capacity of
corn stover each hour (300,000 metric tons annually) with the annual
operation time of 8000 h.

The input data in pretreatment process contained the sulfuric acid
dosage per dry corn stover at 2%, the solids/liquid ratio at 2:1 (w/w),
pretreatment temperature at 175 °C, pretreatment time at 5min and
pretreatment conversion yield at 4% for glucose from glucan, 40% for
xylose from xylan, 3.3% for furfural from xylan and 60% for acetic acid
hydrolysis ratio. The input data in detoxification process contained
detoxification temperature at 28 °C, detoxification time at 48h and
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detoxification conversion yield at 100% for furfural, 70% for acetic acid
and 5% for glucose (Zhang et al., 2016). The input data in sacchar-
ification and fermentation as well as product recovery process was
based on the following premises: (1) the glucan conversion yield to
glucose in SHF was calculated based on our previous study (Zhou et al.,
2017) while the yield in SSF was calculated using the same citric acid
yield from glucose with SHF; (2) the citric acid yield from glucose in
SHF was cited from our previous study (Zhou et al., 2017) while the
yield in SSF was set as same; (3) the solid/liquid separation yield of
hydrolysate slurry and fermentation slurry, as well as alkali neu-
tralization yield and acidolysis yield in both cases were experimentally
measured.

The material and energy balance data from Aspen Plus modeling
were used to design equipment and determine chemical usage. The year
of 2013 was used as the reference year. The exchange rate from US
dollar ($) to Chinese Yuan (CNY) used was 1: 6.6 according to the
current average rate (http://data.stats.gov.cn/). The general equipment
of pumps, conveyors and evaporators were quoted from the NREL
model (Humbird et al., 2011). The specific equipment of reactors, fer-
mentors and agitators were modified according to actual situation in
China. A discounted cash flow rate of return to determine the minimum
citric acid selling price (MCSP, $/kg) required a net present value of
zero for 8% internal rate of return after taxes.

3. Results and discussion

3.1. Feasibility and validation of SSF for aerobic citric acid fermentation by
A. niger

The feasibility of aerobic SSF for cellulosic citric acid fermentation
by A. niger SIIM M288 under high feedstock solids loading was eval-
uated. In the first stage, the dry acid pretreated and biodetoxified corn
stover feedstock was pre-hydrolyzed into the corn stover hydrolysate
slurry in a specially designed helical impeller (Zhang et al., 2010a). In
the second stage, the liquid suspension slurry was transferred into the
second bioreactor equipped with two Rushton impellers, then the A.
niger seed culture was inoculated and aeration was initiated to supply
oxygen for the fungus growth, marking the start of the SSF operation for
citric acid production (Fig. 1). Glucose was rapidly generated from
cellulose hydrolysis and consumed gradually to a very low level, while
citric acid started to accumulate till the end of fermentation, indicating
a successful SSF was operated. The dissolved oxygen (DO) level sharply
decreased to approximately 10% of saturation and then gradually in-
creased at the late stage of the SSF, indicating that the oxygen transfer
from air phase to the highly viscous hydrolysate slurry phase for the
growth and metabolism of the high oxygen demanding filamentous
fungus strain was satisfied. The high cell viability indicates that the
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Fig. 1. SSF for cellulosic citric acid fermentation by A. niger from corn stover feedstock.
Prehydrolysis conditions: 25% solids loading, 6 mg cellulase protein/g DM, 50 °C, pH 4.8
for 12 h. SSF conditions: inoculum size 10%, 1vvm, 33 °C for 192 h.
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fungus cell growth was not negatively affected by the shear stress of
solid particles and air bubbles. Citric acid generation continued when
apparent glucose was almost exhausted after 132h, perhaps due to
glucose release from the residual cellulose.

We also noticed that the aerobic SSF by A. niger showed slightly
different from the typical anaerobic SSF such as ethanol (Liu et al.,
2018) or lactic acid (Qiu et al., 2017; 2018) fermentations. In anaerobic
SSF, generally the rate limiting step was the hydrolysis of pretreated
lignocellulose feedstock in which the initial glucose was consumed
quickly from the beginning to a near zero level till the end of SSF due to
the faster ethanol or lactic acid formation rate. However, the glucose
generation rate in the aerobic SSF by A. niger was greater than the
consumption rate, as indicated by a peak glucose accumulation at 24 h
(Fig. 1).

In the high solids content SSF, the mycelia of the filamentous A.
niger fungus were strongly entangled with the rodlike corn stover fibers
(Fig. 2a). The average size of the entangled mycelium-fiber bodies
(balls) slightly decreased from 59.2um to 53.7 um but quickly in-
creased to 104.5 um during the SSF (Fig. 2b), while the viscosity also
decreased from 0.2 Pa's to 0.1 Pas then sharply increased to 0.5Pa-s
(Fig. 2¢). The entangled mycelium-fiber bodies negatively affected the
oxygen transfer as well as the catalytic efficiency of the fungus cells.
The phenomenon partially explained the slow citric acid fermentation
rate by A. niger strains in the high solids loading and highly viscous corn
stover hydrolysate. On the other hand, the final average size of en-
tangled mycelia-fiber bodies was less than 0.5 mm in diameter, which
was still suitable for citric acid fermentation (Papagianni, 2007; Snell
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Fig. 2. Evolution of strain morphology (a), particle size
distribution (b) and rheology (c) in the SSF of corn stover by
A. niger. The enlargement of the photos in (a) was 20 folds.
Prehydrolysis conditions: 25% solids loading, 6 mg cellulase
protein/g DM, 50 °C, pH 4.8 for 12h. SSF conditions: in-
oculum size 10%, 1vvm, 33 °C for 192 h.

Corn stover fiber

Kp (Pa-s")

and Schweiger, 1951).

A significant difference between the present SSF using fungus strain
and the previous SSF using yeast or bacterial strain was observed on the
rheology behaviors. In general SSF operations, the apparent viscosity of
fermentation slurry decreased with the progress of SSF because of the
reduced molar mass of cellulose fragments (Hou et al., 2016; Zhang
et al., 2010a). However, in this SSF, the fungal mycelia entangled with
the corn stover particles and generated larger particle bodies, resulting
in the increased viscosity of fermentation slurry and decreased oxygen
transfer rate.

3.2. Maximizing citric acid yield and productivity by regulating operation
parameters

The fermentation parameters of SSF on cellulosic citric acid pro-
duction were carefully examined for maximizing the conversion yield
and productivity (Fig. 3). The prolonged prehydrolysis time elevated
the initial glucose concentration but the final citric acid yield was ap-
proximately the same (Fig. 3a). The suitable temperature for enzymatic
hydrolysis was 50 °C, but the proper growth temperature for A. niger is
in the range of 25-30 °C (Angumeenal and Venkappayya, 2013). The
higher temperature varying from 33 °C to 37 °C is preferred in SSF to
match the high hydrolysis temperature (Fig. 3b). During the SSF, xylose
was slowly released from the residual hemicellulose and gradually
utilized for cell growth and metabolism, and the maximum citric acid
titer (122.7 g/L) appeared at the moderate 35°C. Cellulase enzyme
usage is one of the key factors on the bioconversion cost and a low
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Fig. 3. Parameter optimization of SSF by A. niger on cellulosic citric acid production.
Prehydrolysis conditions: 50 °C and pH 4.8; SSF conditions: inoculum size 10%, 1 vvm for
192 h. (a) Prehydrolysis time. 25% (w/w) solids loading, 6 mg cellulase protein/g DM,
fermentation at 35°C (b) SSF temperature. 25% (w/w) solids loading, 6 mg cellulase
protein/g DM, prehydrolysis for 12h. (c) Enzymatic loading. 4 + 2mg/g indicated 4 mg
cellulase protein/g DM added in prehydrolysis stage and 2mg cellulase protein/g DM
added in fermentation stage, 25% (w/w) solids loading, prehydrolysis for 12h, fermen-
tation at 35 °C. (d) Solid loading. 6 mg cellulase protein/g DM, prehydrolysis for 12h,
fermentation at 35 °C. Agitation rates were 400, 500 and 600 rpm at the solids loading of
20%, 25 and 30%, respectively.
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cellulase dosage was used (4-6 mg cellulase protein/g dry corn stover
matter, DM) (Fig. 3c). The higher cellulase dosage facilitated citric acid
formation, but the fed-batch addition of cellulase at the initial SSF stage
did not make any improvement (4mg/g DM in prehydrolysis plus
2mg/g DM in SSF). The increase of feedstock solids loading certainly
increased the initial glucose concentration and the final citric acid yield
(Fig. 3d), but the further increase from 25% to 30% (w/w) gave a very
limited increase, and the overall conversion yield from cellulose to ci-
tric acid also decreased from 86.8% to 74.9%. The maximum citric acid
titer of 136.3 g/L was obtained under the solids loading of 30% (w/w)
at 6 mg cellulase protein/g DM and 35 °C. However, SSF for citric acid
production at the relatively lower solids loading of 25% could be more
economic due to the higher conversion yield.

3.3. Techno-economic analysis (TEA) on cellulosic citric acid production
from corn stover

The Aspen Plus model for production of cellulosic citric acid was
established by processing 37.5 metric tons dry corn stover each hour.
The two typical operation cases of SHF and SSF for cellulosic citric acid
production were evaluated using the same corn stover feedstock and
biorefining processing technology (dry acid pretreatment and biode-
toxification, DryPB) (Liu et al., 2018). The SHF case was cited from our
previous study (Zhou et al., 2017), in which the dry acid pretreated and
biodetoxified corn stover feedstock was enzymatically hydrolyzed at
the solids loading of 25% for 48 h, and then the corn stover hydrolysate
was obtained by solid/liquid separation and sent for citric acid fer-
mentation (Table 1). The SSF case was cited from Fig. 3b, in which the
corn stover feedstock was pre-hydrolyzed at the same solids loading and
then directly sent for simultaneous saccharification and fermentation
(SSF) without solid/liquid separation. The SSF case obtained the higher
citric acid titer (120 g/L) and conversion yield (84.8%) in a short
overall time (168h) than the SHF case (100 g/L, 62.3%, 240h, re-
spectively).

The process diagram of the two cases was shown in Fig. 4. The
materials balance shows that the solid/liquid separation of hydrolysate
slurry in SHF caused a considerable sugar loss (1.697 tons of glucose,
1.071 tons of xylose and 3.426 tons of glucan and xylan per hour),
while no sugar loss in SSF by eliminating the solid/liquid separation
(Fig. 4a). SSF produced 327 kg of citric acid (98%, w/w) from one ton
of dry corn stover, but SHF produced 260 kg. Besides, 14.559 tons of
wastewater was generated in SHF for producing one ton of citric acid
product, while only 12.284 tons of wastewater was generated in SSF
(Fig. 4a). The more wastewater generation in citric acid product was
since that product purification by alkali neutralization and acidolysis
generated abundant of non-recyclable water containing dark color im-
purities. The solid/liquid separation and the longer overall operating
time in SHF also led to increase of electricity consumption by 18.4%
than that in SSF (Fig. 4b).

The TEA calculation based on the established Aspen Plus model
shows that the minimum citric acid selling prices (MCSP) by SHF was

Table 1
Main process input data for establishing the Aspen Plus model and conversion costs.

SHF SSF

Solids loading (%) 25 25
Cellulase dosage (mg protein/g dry feedstock) 6 6

Temperature for hydrolysis (°C) 50 50
Residence time for hydrolysis (h) 48 12
Temperature for fermentation (°C) 33 35
Residence time for fermentation (h) 192 156
Citric acid concentration (g/L) 100 120
MCSP ($/kg citric acid product) 0.851 0.603
Feedstock 0.280 0.222
Enzyme 0.098 0.077
Non-enzyme conversion 0.473 0.304
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Fig. 4. Materials and energy balance of cellulosic citric acid production from corn stover on the hour basis (metric tons per hour). (a) Materials balance; (b) Energy balance.
Abbreviations: CS, Corn stover; PCS, Pretreated corn stover; BPCS, Biodetoxified and pretreated corn stover; CSS, Corn stover hydrolysate slurry; CSH, Corn stover hydrolysate; CA, Citric
acid; MCSP, Minimum citric acid selling price. "All patterning used in this Figure were abstract representation of processing flowsheet and not the real equipment drawing.

$0.851 per kg, in which the contribution of feedstock, enzyme and non-
enzyme conversion were $0.280, $0.098 and $0.473 per kg (Table 1),
respectively. The greater non-enzyme conversion in citric acid pro-
duction was mainly caused by the higher power consumption, longer
fermentation period, and more complicated product recovery opera-
tions. For the SSF case, the MCSP of $0.603 per kg just turned the profit
of cellulosic citric acid below the current market price ($0.68 per kg,
Alibaba Enterpriser website https://www.1688.com, cited from Wei-
fang Ensign Industry Co).

4. Conclusion

The feasibility of aerobic SSF by the high oxygen demanding A. niger
fungus for cellulosic citric acid production was evaluated. The high
citric acid titer and the conversion yield of 84.8% by SSF resulted in the
minimum citric acid selling price (MCSP) from corn stover feedstock,
which is competitive to the commercial citric acid produced from starch
or sugar feedstocks.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.biortech.2018.01.011.
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